Quantitative PET comparing gated with nongated acquisitions using a NEMA phantom with respiratory-simulated motion.
نویسندگان
چکیده
UNLABELLED This study evaluated the use of gated versus nongated PET acquisitions for absolute quantification of radioisotope concentration (RC) in a respiratory motion-simulated moving phantom filled with radioactive spheres and background for both 2-dimensional (2D) and 3-dimensional (3D) acquisitions. METHODS An image-quality phantom with all 6 spheres filled with the same (18)F RC (range, 19-62 kBq/mL) was scanned with PET/CT at rest and in motion with and without gating. The background was filled with (18)F solution to yield sphere-to-background ratios of approximately 5, 10, 15, and 20 to 1. Both 2D and 3D acquisitions were used for all combinations. Respiratory motion was simulated by using a motor-driven plastic platform to move the phantom periodically with a displacement of 2 cm and a cycle time of 5.8 s. For gated acquisitions, the phantom was tracked using a real-time position management system. Images were reconstructed, and regions of interest with the same sizes as the actual spheres were manually placed on axial slices to determine maximum and mean pixel RC. A threshold method (70% and 94% for 2D and 3D modes) was also used to determine a mean voxel RC. All values were compared with the expected RC; percentage differences were calculated for each sphere. To reduce partial-volume effects, only data for the 4 largest spheres were analyzed. RESULTS The mean pixel method was the only method with linear responses for all 3 scan types, enabling direct comparisons. The ranges of RC percentage differences were underestimated for all scan types (using the mean pixel method). The overall mean percentage differences were 37, 49, and 41 in 2D mode and 40, 51, and 41 in 3D mode for static, nongated, and gated acquisitions, respectively. Gated acquisitions improved quantification (by reducing underestimation) over nongated acquisitions by 8% and 10% for 2D and 3D modes. CONCLUSION In the presence of motion, the use of gated PET acquisitions appears to improve quantification accuracy over nongated acquisitions, almost restoring the results to those observed when the phantom is static.
منابع مشابه
Monte-Carlo simulations of clinically realistic respiratory gated 18F-FDG PET: Application to lesion detectability and volume measurements
In PET/CT thoracic imaging, respiratory motion reduces image quality. A solution consists in performing respiratory gated PET acquisitions. The aim of this study was to generate clinically realistic Monte-Carlo respiratory PET data, obtained using the 4D-NCAT numerical phantom and the GATE simulation tool, to assess the impact of respiratory motion and respiratory-motion compensation in PET on ...
متن کاملFully 4D list-mode reconstruction applied to respiratory-gated PET scans.
(18)F-fluoro-deoxy-glucose ((18)F-FDG) positron emission tomography (PET) is one of the most sensitive and specific imaging modalities for the diagnosis of non-small cell lung cancer. A drawback of PET is that it requires several minutes of acquisition per bed position, which results in images being affected by respiratory blur. Respiratory gating techniques have been developed to deal with res...
متن کاملRespiratory and cardiac motion correction in dual gated PET/MR imaging
LaTIM, INSERM, UMR 1101, Brest, France Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reco...
متن کاملRespiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation
Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...
متن کاملThe effect of breathing irregularities on quantitative accuracy of respiratory gated PET∕CT.
PURPOSE 4D positron emission tomography and computed tomography (PET∕CT) can be used to reduce motion artifacts by correlating the raw PET data with the respiratory cycle. The accuracy of each PET phase is dependent on the reproducibility and consistency of the breathing cycle during acquisition. The objective of this study is to evaluate the impact of breathing amplitude and phase irregulariti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine technology
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2007